
Cloud Computing- Serverless Computing and Function as a Service.
(FaaS)

Calvin Ssendawula

Adams State University

208 Edgemont Blvd. Unit 890

Alamosa. Colorado 81101 ssendawulac@adams.edu

Abstract—Serverless computing has emerged as a cloud

paradigm that allows developers to run code without managing
servers, Function as a Service offerings like AWS Lambda. This
paper provides an exploration of serverless computing focusing
on real-world applications, performance comparisons with
traditional architectures and across platforms, and future
trends.

We discuss how serverless architectures are employed in
production from web and mobile backends to IoT data
processing – and examine performance characteristics such as
scalability, latency, and cost. AWS Lambda is used as a
representative example of technology alongside other platforms
(Azure Functions, Google Cloud Functions), illustrating
commonalities and differences. We include case studies (e.g.,
Coca-Cola’s vending machine platform and iRobot’s IoT
backend) that demonstrate the benefits and challenges of going
serverless in practice. Finally, emerging trends and research
directions are highlighted, indicating how serverless computing
is evolving to address current limitations (such as cold start
latency, tooling, and state management) and to broaden its
applicability. The presentation is formal and informative, with
a clear structure and references to relevant literature and
industry sources to aid further reading.

Keywords— AWS Lambda, Serverless, scaling, trigger
events, Function as a Service, Google Cloud functions

I. INTRODUCTION

Cloud computing continues to evolve from low-level
Infrastructure-as-a-Service (IaaS) offerings toward more
managed and granular services. Serverless computing – often
manifested through Function-as-a-Service – is the latest step
in this evolution, freeing developers from operational
concerns like provisioning or scaling servers. In a serverless
model, developers deploy functions (small units of code) that
are executed on-demand in a fully managed environment,
typically triggered by events. The term “serverless” is
somewhat a misnomer; servers exist but are abstracted away
by the provider. This approach lets developers focus on
application logic rather than infrastructure management.
Function-as-a-Service (FaaS) platforms have rapidly gained
traction since their introduction. Amazon launched AWS
Lambda in 2014 as the first FaaS service, and other cloud
providers like Google Cloud Functions and Microsoft Azure
Functions followed by 2016. These services enable an event-
driven architecture where functions automatically run in
response to events (HTTP requests, file uploads, database
updates, IoT sensor readings, etc.), with the cloud provider
handling resource allocation and scaling transparently.
Industry adoption has grown quickly; many organizations

now run production workloads on serverless platforms,
attracted by benefits such as automatic scaling, fine-grained
billing, and faster development cycles. At the same time,
researchers and practitioners have identified challenges that
come with this new paradigm – for example, performance
variability and tooling gaps – which we will discuss in depth.

This paper provides a comprehensive overview of
serverless computing and FaaS, in the style of an IEEE
technical report. We survey the architecture and design of
serverless platforms, highlight real-world use cases and
deployments, compare performance across different FaaS
providers and against traditional server-based architectures,
and discuss future trends. By analyzing both academic studies
and industry case studies, we aim to give readers a balanced
understanding of when and how serverless architectures are
beneficial, and what trade-offs to consider.

II. RELATED WORK & APPLICATION

In a serverless FaaS platform, the underlying architecture is
built to automatically manage function execution in response to
events. Understanding the design of serverless systems helps to
appreciate their performance characteristics and limitations.
This section describes the general architecture of FaaS,
including how functions are invoked, isolated, scaled, and
integrated with other services.

Function Invocation Model: In a serverless setup,
developers deploy one or more functions along with
configuration specifying what events should trigger each
function. Common event sources include HTTP endpoints (via
API gateways), message queues, database change streams,
scheduled cron-like timers, cloud storage events (e.g., “file
uploaded to bucket”), IoT device messages, and more. When an
event occurs, the platform’s Event Router or Dispatcher will
locate the appropriate deployed function and route the event to
it for processing. For example, AWS uses Amazon API Gateway
to route HTTP requests to Lambda functions, and AWS S3 can
trigger Lambda functions on object uploads. The key is that
event handling is built-in – the cloud handles listening for events
and calling the function, rather than requiring the developer to
run a daemon or server to poll or receive events.

Execution Environment: Each serverless function runs
within a sandboxed environment that the provider prepares on-
demand. Typically, this is implemented with containers or
micro-VMs under the hood. For instance, AWS Lambda
historically used containers (based on Amazon Linux) to run
functions, and more recently uses Firecracker micro-VMs to
enhance security isolation with minimal startup overhead. When

a function is invoked and no warm instance is available, the
platform will create a new container/VM for that function, load
the code and runtime (e.g., Node.js, Python interpreter), execute
the function with the event data, and then keep the instance alive
for a short period in case subsequent events arrive

Scalability Mechanisms: From an architecture standpoint,
the FaaS platform includes an autoscaling controller that
monitors incoming event rates and manages the pool of function
instances. All major providers advertise virtually unlimited
scaling – in practice, they have default safety limits (for
example, AWS Lambda default is 1000 concurrent executions
per account per region, which can be raised on request)

Integration with Other Services: A serverless function
rarely lives in isolation – it often needs to interact with other
services (databases, APIs, caches, etc.). Cloud providers offer
extensive integration, essentially composing FaaS with BaaS.
For example, a typical web application in AWS might use API
Gateway + Lambda + DynamoDB (a NoSQL database).
Notably, all these components can be serverless: API Gateway
is a managed service to accept HTTP calls, Lambda is FaaS, and
DynamoDB in on-demand mode can autoscale throughput. As
one article notes, “each of the AWS components in the
diagram… are considered serverless” – the API gateway, the
function, and the database all scale automatically and require no
customer-managed servers

Case Study 1: Coca-Cola’s Serverless Vending Machine
Backend

Coca-Cola is a globally recognized brand, and their vending
machines serve millions of customers. Around 2016, Coca-Cola
North America undertook an initiative to migrate some of their
digital services to a serverless architecture. One key system is
the remote monitoring and marketing system for vending
machines. Traditionally, a fleet of always-on servers (Amazon
EC2 instances) was used to handle machine telemetry and
promotional campaigns (such as updating a machine with “buy
one get one free” offers, or notifying technicians when a
machine is low on stock) This system ran on 6 EC2 virtual
machines with load balancers, costing about $12,864 per year to
operate, including maintenance and management overhead.

In the serverless revamp, Coca-Cola moved this
functionality to AWS Lambda (FaaS) along with other AWS
services like API Gateway and DynamoDB. Now, when a
vending machine reports an event (e.g., a sale or a status update),
it triggers an API Gateway endpoint which invokes a Lambda
function that contains the business logic.

Figure 1: Architecture of Coca-Cola’s serverless vending
machine application. A drink purchase triggers a Payment
Gateway (standard REST API call) which goes through the
Amazon API Gateway to invoke an AWS Lambda function that
handles all business logic. Optionally, a mobile app is notified
of the transaction. The end-to-end interaction completes in
under one second.

Case Study 2: iRobot’s Serverless IoT Cloud Platform

iRobot, the maker of the Roomba robotic vacuum, transitioned
to a serverless backend to support their internet-connected
devices. When iRobot introduced Wi-Fi enabled Roombas, they
needed a cloud platform that could reliably connect thousands
(eventually millions) of robots, handling sporadic bursts of
activity – for example, many users activating their new vacuums
during a holiday season. Initially, iRobot tried a turnkey IoT
cloud solution but found it lacking in scalability and control.
They decided to migrate to AWS and crucially chose a
serverless architecture for their IoT backend. In iRobot’s
architecture, each Roomba connects via AWS IoT Core (MQTT
messaging broker). The IoT messages from devices trigger
AWS Lambda functions that implement various backend logic
– such as registering a device, sending commands to the robot
(start cleaning, stop, dock, etc.), and processing telemetry data
coming from the robot. The platform also exposes web APIs (for
the mobile app) which are backed by Lambda functions. The
use of serverless was motivated by the need for massive
scalability and not having to worry about infrastructure – as
iRobot’s Cloud Robotics research scientist put it, AWS offered
tools “that enable us to use a serverless architecture that saves
us the headaches of learning to scale”. With unpredictable
surges (like a big sale where thousands of new robots come
online), the automatic scaling was essential to maintain
availability.

III. RESULTS

The results of Coca Cola migration were impressive.
In terms of cost, the serverless solution cost approximately
$4,490 per year (for around 30 million requests per month) –
roughly 65% cheaper than the previous static server setup. The
Coca-Cola cloud team noted that the break-even point where
running their own servers would start to make sense
economically was around 80 million calls per month (far
above their normal traffic at the time). This means serverless
provided substantial cost savings up to very high scale.
Performance-wise, the system achieved an end-to-end latency
of under 1 second for a vending machine transaction to be
processed and confirmed. This included third-party calls (to
payment APIs and push notification services). The serverless
backend easily scaled during peak usage (for example, during
promotions or seasonal spikes), without any manual
intervention to add servers. Another benefit reported was the
increased speed of development and deployment – new
features or changes could be rolled out as isolated functions
without affecting the whole system. An interesting
consequence of the success of this project was cultural: Coca-

Cola’s technology leadership was so satisfied with the
outcomes that they set a strategic direction to pursue a
“Serverless First” approach for new application. When
architects present new ideas internally, they are expected to
consider serverless implementations as the default, unless a
strong case for an alternative is made. Of course, not
everything can be serverless (Coke still had to keep some EC2
instances to support older machines until they are phased out),
but this case study demonstrates how a large enterprise can
leverage FaaS to modernize part of their infrastructure,
significantly reduce costs, and improve maintainability.

By using a serverless approach with AWS Lambda
and other managed services, iRobot achieved several benefits;
The platform easily handled surges in device connections and
user interactions. When a spike of events happened (e.g., many
users scheduling cleanings on Christmas morning), AWS
Lambda automatically ran the needed functions in parallel.
There was no need to manually add servers or capacity; the
system scaled out and back down smoothly. The serverless
model kept costs low relative to the volume of activity.
Importantly, iRobot avoided having to build an expensive
always-on infrastructure that would be underutilized much of
the time. As noted in an AWS case study, “by using a
serverless architecture based on AWS IoT and AWS Lambda,
iRobot is able to keep the cost of the cloud platform low, avoid
the need for subscription services, and manage the solution
with fewer than 10 people”. Freed from infrastructure
concerns, iRobot’s developers could focus on features and
product improvements. The serverless backend let them
concentrate on code and customers rather than operations. For
example, they could rapidly develop new cleaning features or
integration with smart home ecosystems, deploying the
necessary backend functions quickly. AWS’s global regions
allowed iRobot to deploy their functions in multiple regions to
serve customers in over 60 countries with low latency.
Features like AWS Lambda’s integration with CloudFront
(Lambda@Edge) were also evaluated to potentially move
some processing closer to where devices are.

IV. CONCLUSION

Serverless computing and Function-as-a-Service have
transformed the landscape of cloud architecture by abstracting
away server management and enabling highly scalable, event-
driven applications. In this paper, we presented an overview of
serverless computing suitable for an undergraduate
understanding, covering its fundamental concepts,
architecture, practical applications, performance
characteristics, and future trends. We saw that serverless
platforms like AWS Lambda, Azure Functions, and Google
Cloud Functions allow developers to run code in response to
events with automatic scaling and pay-per-use pricing. Real-
world usage of these platforms ranges from web APIs and
chatbots to IoT backends and big data processing,
demonstrating the versatility of the paradigm. Through case
studies such as Coca-Cola’s vending machine backend and
iRobot’s IoT cloud, we illustrated concrete benefits of

serverless in production: simplified operations, rapid
scalability, and cost savings, without sacrificing performance
for appropriate workloads. In performance comparisons,
serverless solutions proved capable of matching or exceeding
traditional architectures in handling bursty loads and parallel
tasks, though considerations around cold start latency and
execution limits must be managed. We highlighted that AWS
Lambda often sets the benchmark in FaaS performance (with
optimizations to minimize cold starts and robust scaling),
while other platforms are quickly catching up and offering
unique features of their own. The paper also discussed
challenges that come with serverless computing, including
execution delays due to cold starts, difficulties in debugging
and monitoring distributed functions, and potential vendor
lock-in. These are active areas of improvement. The future
trends analysis indicates an ongoing evolution: research and
development efforts are aiming to reduce latencies, introduce
more flexible pricing and hybrid deployment models, support
stateful and long-running scenarios, and provide better
developer tools and security for serverless applications. In
particular, we expect serverless to integrate more with edge
computing, enabling functions to run wherever optimal (cloud
or edge) to serve end-users with minimal latency. In
conclusion, serverless computing has proven to be more than a
buzzword – it represents a powerful cloud computing model
that is likely to persist and grow. For organizations and
developers, serverless offers a path to focus on innovation and
functionality while leaving the undifferentiated heavy lifting of
infrastructure to cloud providers. It is not a one-size-fits-all
solution, and traditional servers and containers will continue to
have their place. However, as serverless platforms address
their current limitations, their domain of applicability will
broaden. We may envision a future where deploying
applications as collections of serverless functions is as
common as deploying to VMs or containers is today. In
educating the next generation of engineers, understanding
serverless and FaaS is therefore crucial, as it has become a key
part of the modern cloud computing toolbox. With ongoing
advancements, serverless computing is poised to play a central
role in how we build scalable, resilient, and cost-effective
systems in the cloud.

 REFERENCE:

1. R, Moneer. “Serverless Showdown: Aws

Lambda vs Azure Functions vs Google

Cloud Functions.” Pluralsight, 2022,

www.pluralsight.com/resources/blog/cloud/s

erverless-showdown-aws-lambda-vs-azure-

functions-vs-google-cloud-

functions#:~:text=While%20cloud%20provi

ders%20do%20not,as%20observed%20by%

20industry%20analysts.

2. Randall, James. “Test Methodology.” James

Randall, 2020,

www.jamesdrandall.com/posts/comparative_

performance_of_azure_functions_and_aws_l

ambda/#:~:text=Image.

3. Hassan, Hassan B., et al. “Survey on

Serverless Computing - Journal of Cloud

Computing.” SpringerOpen, Springer Berlin

Heidelberg, 12 July 2021,

journalofcloudcomputing.springeropen.com/

articles/10.1186/s13677-021-00253-

7#:~:text=,comprehend%20how%20this%20

technology%20works.

4. Amazon, AWS. “IRobot Case Study.” AWS

AMAZON, 2019,

aws.amazon.com/solutions/case-

studies/irobot/.

5. Rehemägi, Taavi. “Serverless Framework:

The Coca-Cola Case Study.” Dashbird, 3

Aug. 2020, dashbird.io/blog/serverless-case-

study-coca-

cola/#:~:text=The%20logic%20behind%20t

he%20vending,Android%20Pay%20or%20

Apple%20Pay.

6. A. Christidis, S. Moschoyiannis, C. -H. Hsu

and R. Davies, "Enabling Serverless

Deployment of Large-Scale AI Workloads,"

in IEEE Access, vol. 8, pp. 70150-70161,

2020, doi: 10.1109/ACCESS.2020.2985282.

7. keywords: {Libraries;Load

modeling;Computer architecture;Real-time

systems;Predictive

models;Optimization;Intelligent

transportation;predicting train

delays;AWS;functions as-a-

service;Lambda;NoSQL;serverless;resource-

constrained;serverless codebase

optimization;rail traffic big data},

8. A. Corradi and A. Sabbioni, "Serverless

Computing for Society 5.0," in IT

Professional, vol. 26, no. 5, pp. 79-84, Sept.-

Oct. 2024, doi:

10.1109/MITP.2024.3409942.

9. keywords: {Protocols;Soft

sensors;Ecosystems;Serverless

computing;Rapid

prototyping;Security;Reliability;Sustainable

development;Standards;Resilience},

USA, 2018, pp. 125-126, doi:

10.1109/PAC.2018.00022. keywords:
{Servers;Privacy;Encryption;Data
privacy;Resistance;Privacy Preservation,
Location Based Services, Identity-Based

Encryption},

http://www.pluralsight.com/resources/blog/cloud/serverless-showdown-aws-lambda-vs-azure-functions-vs-google-cloud-functions#:~:text=While%20cloud%20providers%20do%20not,as%20observed%20by%20industry%20analysts
http://www.pluralsight.com/resources/blog/cloud/serverless-showdown-aws-lambda-vs-azure-functions-vs-google-cloud-functions#:~:text=While%20cloud%20providers%20do%20not,as%20observed%20by%20industry%20analysts
http://www.pluralsight.com/resources/blog/cloud/serverless-showdown-aws-lambda-vs-azure-functions-vs-google-cloud-functions#:~:text=While%20cloud%20providers%20do%20not,as%20observed%20by%20industry%20analysts
http://www.pluralsight.com/resources/blog/cloud/serverless-showdown-aws-lambda-vs-azure-functions-vs-google-cloud-functions#:~:text=While%20cloud%20providers%20do%20not,as%20observed%20by%20industry%20analysts
http://www.pluralsight.com/resources/blog/cloud/serverless-showdown-aws-lambda-vs-azure-functions-vs-google-cloud-functions#:~:text=While%20cloud%20providers%20do%20not,as%20observed%20by%20industry%20analysts
http://www.pluralsight.com/resources/blog/cloud/serverless-showdown-aws-lambda-vs-azure-functions-vs-google-cloud-functions#:~:text=While%20cloud%20providers%20do%20not,as%20observed%20by%20industry%20analysts

